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Abstract—This note is concerned with the problem of delay-

distribution-dependent stability and stabilization for 

networked control systems with stochastic network induced 

delay and data packet dropout. The stochastic delay and 

data packet dropout are viewed as stochastic time-varying 

delay without any constraints on its derivative. Which is 

assumed to be satisfying a interval Bernoulli distribution. 

Due to the probability of the delay taking value in different 

intervals, a new approach is given to model the networked 

control systems. Based on the Lyapunov stability theory, 

with the linear matrix inequality approach, a new 

stabilization criterion is obtained. Then the controller is 

given to make the closed-loop systems mean-square stable. 

A numerical example is provided to demonstrate the 

validity of the proposed design approach. 

 

Index Terms—networked control systems;stochastic delay; 

packet dropout 

I. INTRODUCTION 

It is well known that a feedback control system in 

which all devices(sensors, controllers and actuators) are 

interconnected by communication networks is called 

networked control systems(NCSs).Compared with the 

traditional point-to-point architecture control systems, the 

networked control systems have the advantages of high 

mobility, low cost, easy maintenance and reconfiguration. 

For these advantages, the networked control systems 

receive more and more attention and has been a very hot 

research topic [1-4]. 

However, the network itself is a dynamic system that 

exhibits characteristics such as network-induced delay and 

packet losses. The insertion of the communication 

network induces different forms of time delay uncertainty 

between sensors, actuators and controllers. These time 

delays come from the time sharing of the communication 

medium as well as the computation time required for 

physical signal coding and communication processing [5-

8]. It is well known in control systems that time delays 

can degrade a system's performance and even cause 

system instability. Another significant difference between 

NCSs and standard digital control is the possibility that 

data may be lost while in transit through the network 

because of uncertainty and noise. And the worked-

induced delay or packet losses are usually stochastic and 

described by a two-state Markov chain, which is 

especially common in wireless communication networks 

such as Bluetooth and WLAN. Different methods have 

been developed to deal with the above problems [9-11]. 

The stochastic optimal control of networked control 

systems whose network-induced delay is shorter than one 

sampling period is studied using the time-stamp technique 

[10]. By viewing the time-varying network-induced delay 

as parameter uncertainty, the stabilization of networked 

control systems with delay shorter than one sampling 

period is studied and sufficient conditions expressed in 

linear matrix inequality are presented in [11]. 

In this paper, our objective is to consider the problem 

of delay-distribution-dependent stability for networked 

control systems with stochastic delay and data packet 

dropout. A new approach is given to model the NCSs. 

Based on the Lyapunov stability theory, a new 

stabilization criterion is given.  

II. PROBLEM FORMULATION 

Consider the following control system  

0 0

( ) ( ) ( )

( ) ( ) ( )

( )   

x t Ax t Bu t

y t Cx t Du t

x t x

 

 



                  (1) 

where ( ) nx t R is the state vector, ( ) mu t R is 

the input vector, ( ) ry t R is the controlled 

output, 0x is an constant vector. , , ,A B C D are 

known real constant matrices with appropriate 
dimensions. 

Throughout this note, we suppose that all the system's 

states are available for a state feedback control. In the 

presence of the control network, which is shown in fig.1, 

data transfers between the controller and the remote 

system, e.g., sensors and actuators in a distributed control 

system will induce network delay in addition to the 

controller proceeding delay. 

In this note we make the following assumptions: 
Assumption 1: Sensor and controller are clock-
driven. 
Assumption 2:  Actuator is event-driven. 

In Fig.1,
sc is the communication delay between 

the sensor and the controller; 
c is the 

computational delay in the controller;
ca is the 

communication delay between the controller and the 
actuator. Here we suppose that 

[0, ]sc c ca

k        is stochastic network-

induced delay, where is a constant. ( ) [0, ]d k d  

representing the stochastic data dropout number 
between the sensor and the actuator. 
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Figure 1. A typical networked control system 

We introduce the stochastic delay ( )h t to denote the 

stochastic delay and data packet dropout, where 

( ) ( )k kh t t t d k T      

where
2( ) [0, ]h t  ,

2 (1 )d T    . 

With the state feedback controller 

( ) ( )u t Kx t                                (2) 

where 
m nK R   is a constant matrix to be obtained. 

We know that 

( ) ( ) ( ( ) ) ( ( ))k k ku t Kx t Kx t d k T Kx t h t     

 
Inserting the above controller into system(1), we 

obtain the closed system: 

1

0 2 0

( ) ( ) ( ( ))

( ) ( ) ( )    [ , ]       1,2,

 ( ) ( )                     [  ]

k k

x t Ax t BKx t h t

y t Cx t Du t t t t k

x t t t t , t 



  

   

  

(3) 

where ( )h t is stochastic on 2[0,  ] without any constraint 

on its derivative. The initial condition of the state ( )x t  

on 0 2 0[  ]t t , t   is supplemented as  ( ) ( )x t t , 

0 2 0[  ]t t , t  , 0 0( )t x  , where ( )t is a continuous 

function on 0 2 0[  ]t , t . 

It is assumed that there exists a constant 1 2[0,  )   

such that the probability of ( )h t  taking values in 

1[0,  ) and 1 2[ ,  ]   can be observed. In order to 

employ the information of the probability distribution of 

the delay in the system model, the following sets are 

proposed firstly 

1 1 2 1 2{ : ( ) [0,  )}  { : ( ) [ ,  ]}t h t t h t         

Obviously, 1 2 R   and 1 2   . 

Then we define two functions as: 

1 2

1 2

1 1 2

( )    ( )    
( )    ( )

0               

h t t h t t
h t h t

t t

  
  

  
 

Corresponding to ( )h t  taking values in different 

intervals, a stochastic variable ( )t  is defined 

1

2

1         
( )

0        

t
t

t



 


 

Where we suppose that ( )t  is a Bernoulli distributed 

sequence with Pr { ( ) 1} { ( )}ob t E t     , 

where [0,1]   is a constant. 

By using the new functions 
1 2( ), ( )h t h t  and 

stochastic variable ( )t , the systems(3) can be 

equivalently written as 

1 2

1

0 2 0

( ) ( ) ( ) ( ( )) (1 ( )) ( ( ))

( ) ( ) ( )    [ , ]       1,2,

 ( ) ( )                     [  ]

k k

x t Ax t t BKx t h t t BKx t h t

y t Cx t Du t t t t k

x t t t t , t

 

 



     

   

  

(4) 

III. MAIN RESULTS 

  Lemma 1 [2] For any vectors ,a b  and matrices 

, , ,N X Y Z  with appropriate dimensions, if the 

following matrix inequality holds 

0
T

X Y

Y Z

 
 

    
then we have 

, ,
2 inf

T

T

T TX Y Z

a X Y N a
a Nb

b Y N Z b

     
       

       

Lemma 2 [4] The LMI
( ) ( )

0
* ( )

Y x W x

R x

 
 

 
 is 

equivalent to 

( ) 0R x  ,
1( ) ( ) ( ) ( ) 0TY x W x R x W x   

where ( ) ( ), ( ) ( )T TY x Y x R x R x   depend  on x . 

Theorem 1.  For the networked control systems (4), if 

there exist positive-definite matrices 1 2, , n nP Q Q R  , 

matrices 
m nK R  , iX ,  1,2iY i   with appropriate 

dimensions , such that the following matrix inequalities 
hold 

11 12 13

22 23

33

* 0

* *

   
 

    
 
  

                          (5) 

1 1

1

0
X Y

Q

 
 

 
                                   (6) 

2 2

2

0
X Y

Q

 
 

 
                                   (7) 

where 
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11 1 1 1 111 2 2

2 211 11 11 21 21

12 1 1 1 112 2 2

2 212 11 12 22

13 1 1 1 113

2 2 2 213 21

         

         

(1 ) (1 )

         (1 )

T T T

T T

T T

T T

T

T

PA A P A Q A X A Q A

X Y Y Y Y

P BK A Q BK X A Q BK

X Y Y Y

PBK A Q BK X

A Q BK X Y

  



     



   

  

     

    

    

   

     

     13 23

22 1 1 1 122 2 2

2 222 12 12

23 1 123 2 223

33 1 1 1 133

2 2 2 233 23 23

         

(1 )

         (1 )

T T

T T T T

T

T T

T T T

Y Y

K B Q BK X K B Q BK

X Y Y

X X

K B Q BK X

K B Q BK X Y Y

    



 

  

  



   

  

  

   

    

 

with the controller (2), the network control systems(4) is 
mean-square stable. 

Proof Choose a Lyapunov functional candidate for the 

system(4) as follows 

1 2 3( ) ( ) ( ) ( )V t V t V t V t                               (8) 

where 

1

2

1

0

2 1

0

3 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

T

t
T

t

t
T

t

V t x t Px t

V t x s Q x s dsd

V t x s Q x s dsd

 

 





 

 







 

 

 

where 1 2, ,P Q Q  positive-definite matrices with 

appropriate dimensions.  
Then, along the solution of system (4) we have 

1( ) 2 ( ) ( )TV t x t PA t                        (9) 

where 

1 2( ) [ ( )   ( ( ))   ( ( ))]

[   ( )   (1 ( )) ]

T T Tt x t x t h t x t h t

A A t BK t BK



 

  

 
 

1
2 1 1 1( ) ( ) ( ) ( ) ( )

t
T T T

t
V t t A Q A t x s Q x s ds


  


     (10) 

and  

2
3 2 2 2( ) ( ) ( ) ( ) ( )

t
T T T

t
V t t A Q A t x s Q x s ds


  


     (11) 

We know 

1

2

1
( )

2
( )

( ) ( ( )) ( ) 0

( ) ( ( )) ( ) 0

t

t h t

t

t h t

x t x t h t x s ds

x t x t h t x s ds





   

   




 

With two 4n n  matrices 

1

2

3

N

N N

N

 
 


 
  

,
1

2

3

M

M M

M

 
 


 
  

                  

By the lemma 1, we obtain  

1

1

1

1 1

( )
1

1 1 1 1

1

0 2 ( ) [ ( ) ( ( ))]

( ) ( )
    

( ) ( )

 2 ( ) [ ( ) ( ( ))] ( ) ( )

    ( ) ( )

T

T
t

t h t

T T

t
T

t

t N x t x t h t

X Y Nt t
ds

Qx s x s

t Y x t x t h t t X t

x s Q x s ds




 

   





  

    
         

   







   (12) 

and 

2

2 2 2 2

2

0 2 ( ) [ ( ) ( ( ))] ( ) ( )

    ( ) ( )

T T

t
T

t

t Y x t x t h t t X t

x s Q x s ds


   



   

 
 (13) 

where 

11 12 13

22 23

33

i i i

i i i

i

X X X

X X X

X

 
 

 
 
   

,

1

2

3

i

i i

i

Y

Y Y

Y

 
 


 
  

1,2i   

With the (9-13),we can obtain 

{ ( )} ( ) ( )TE V t t t    

With the Lyapunov stability theorem and the 

inequality (5), we know that the system (4) is mean-

square stable. 
Theorem 2 For the networked control systems (4), if 

there exist positive-definite matrices 
1 2, , n nP Q Q R  , 

matrices 
m nK R  , , , 1,2i iX Y i   with appropriate 

dimensions , such  that the following linear matrix 
inequalities hold  

11 12 13 1 1

22 23 1

33 1

1 1

1 1

(1 )

0

0 (1 )

0

(1 )

T T

T T

T T

PA PA

K B

K B

Q

Q

   

 

 

 

 

   

  

    

   

      

    

     

 

2 2

2

2

2 2

2 2

(1 )

0

0 (1 )

                    00 0

0 0

0

(1 )

T T

T T

T T

PA PA

K B

K B

Q

Q

   

 

 

 

 











 
   

       (14)  

1 1

1

0
X Y

Q

 
 

 
                          (15) 

2 2

2

0
X Y

Q

 
 

 
                           (16) 

where 
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11 1 1 1 111 2 211

11 11 21 21

12 1 112 2 212 11 12 22

13 1 113 2 213 21 13 23

22 1 122 2 222 12 12

23 1 123 2 223

33 1 133 2 233 23 2

        

(1 )

T T

T T

T T

T T

T

AP PA A Q A X X

Y Y Y Y

BK X X Y Y Y

BK X X Y Y Y

X X Y Y

X X

X X Y Y

  

  

  

 

 

 

      

   

      

       

    

  

     3

T

 

with the controller 
1( ) ( )u t KP x t , the systems 

(4) is mean-square stable. 
Proof Now we proof that the inequality (5) is 

equivalent to the inequality (14). Obviously, by the 

lemma2, (5) is equivalent to 

11 12 13 1 1 1 1

22 23 1 1

33 1 1

1 1

1 1

2 2 2 2

2 2

2 2

2 2

2 2

(1 )

0

0 (1 )

0

(1 )

(1 )

0

0 (1 )

                 0 0

0 0

0

(1 )

T T

T T

T T

T T

T T

T T

A Q A Q

K B Q

K B Q

Q

Q

A Q A Q

K B Q

K B Q

Q

Q

   

 

 

 

 

   

 

 

 

 

   

  

    

   

      

    

     










 
   

0

    

(17) 
Where 

11 1 111 2 211 11 11 21 21

12 1 112 2 212 11 12 22

13 1 113 2 213 21 13 23

22 1 122 2 222 12 12

23 1 123 2 223

33 1 133 2 233 23 23

(1 )

T T T

T T

T T

T

T

PA A P X X Y Y Y Y

PBK X X Y Y Y

PBK X X Y Y Y

X X Y Y

X X

X X Y Y

 

  

  

 

 

 

        

      

       

    

  

    

     

Pre- and Post-multiplying the inequality(17) by 
1 1 1 1 1 1 1

1 1 2 2{                }diag P P P I Q Q Q Q      
 

and giving some transformations  
1 1 1 1

1 1 2 2

1 1 1 1

   =Q  =Q    

    1,2; 1,2,3ijk ijk ij ij

P P Q Q K KP

X P X P Y P Y P i j

   

   

 

   
 

We know the inequality (17) is equivalent to (14). 

IV. SIMULATIONS 

Consider the networked control systems in the form of 
(4), where  

0.2 0 0 0.1 0
, , ,

0 0.4 0.1 0 0.01

0.01
, 0.4

0

A B C

D 

     
       
     

 
  
 

 

Solving the linear matrix inequality (14-16), we can 

obtain the gain matrix K  of the stabilizing controller 

( )u t  

[ 0.5692  1.5781]K    

From the theorem 2, we know that the systems (4) is 

mean-square stable. 
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